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Zeros of a code 1

Let ¢ = p* be a prime power and n be an integer such that
(n,q) = 1. Then 2" — 1 = p1(x) ... pr(z), where p;(z) are
different irreducible polynomials over F = GF(q). Obviously,
the roots of all polynomials p;(x) are n-th roots of unity. Let
K = GF(q¢™) be the splitting field of ™ — 1, I.e., the minimal
extension of F which contains all n-th roots of unity.

The set of all n-th roots of unity is a multiplicative subgroup
of K*, and it is thus cyclic, that Is, there exists a G € K* such

that all roots of 2z — 1 are {1,3,3%,...,3" 1} If a is a

primitive element of K, then we can take 5 = o' = . The
extension degree m = [K : F] of FF is the smallest positive
iInteger such that ¢™ =1 (mod n).

Definition . The multiplicative order of ¢ modulo n is the
smallest integer m such that » divides ¢™ — 1.
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Zeros of a code 2

Definition . A cyclotomic coset of : modulo »n with respect to
g Is called the set

Ci — {Za ZQ? R 7iqmi_1}7
where i¢™ =14 (mod n) and m; Is the smallest positive
Integer with this property.

Recall that if 3* is a root of a irreducible factor, p(x), of

z" — 1, then any other root of p(z) has the form 3¢, for a
suitable integer s. Hence, there is an one-to-one correspon-
dence between irreducible factors p;(x) of 2™ — 1 and
cyclotomic cosets modulo n.
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Zeros of a code 3

Let C = (g(x)) be a cyclic code. Then its generator

polynomial is g(x) = pr, (2)pi, () - .. pi, ().
Definition . Let C = (¢g(x)) be a cyclic code with a generator
polynomial

jEP
(P is an union of cyclotomic classes.) The set {3/|j € P} is

called the set of zeros of C, and the set {5/|j ¢ P} is
referred to as the set of non-zeros.

Proposition . c(z) € C if and only if ¢(37) = 0 for any j € P,
that is, - .
C=(g(x)) = 1c(z) | c(§') =0, j € P}.

Proposition . v is a zero of C if and only if v~ ! is a
non-zero of C.
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BCH bound

Let {a1,a0,...,a5}, s = |P|, be the set of zeros of the code
C = (g(z)). ThenC = {c € F" | cH™ = 0}, where
(1 ap ot oL Oz?_l\
H — 1 a9 oz% . 043_1
\1 s a2 ... oz?_1)

Obviously, it is sufficient to take only those «; that are roots
of different irreducible factors of g(z).

Theorem . Let C = (g(x)) be a cyclic code over F such that
for some integers b > 0and § > 1

g(B") = g(B"*) = =g(B"7%) =0.
Then the minimum distance of C Is at least 6.
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BCH (Bose-Chaudhudri-Hocquenghem) codes 1

Definition . The cyclic code C = (¢(x)) of length n over IF Is
called BCH code with design distance ¢ if for some integer
b > 0 its generator polynomial g(x) is the least common

multiple of the minimal polynomials of g°, gb+t, ... 6 po+o—2
where j is a primitive n'” root of unity. If n = ¢ — 1, then
the BCH code is called primitive. Usually we take b = 1 and
refer to the resulting code as a narrow-sense BCH code.

Example . (BCH code correcting 2 errors) Let F = GF(2),
n =2 — 1 and « be a primitive element of GF'(2™).

Consider the primitive narrow-sense BCH code with design

distance 5, that is, the BCH code with zeros «a, o, a2, o?,

whose generator polynomial is
g(x) = l.cm.[My(x), M3(x)] = My (x)M;3(x),
where M;(z) = irrpa’ is the minimal polynomial of o,
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BCH (Bose-Chaudhudri-Hocquenghem) codes 1

Note that M (z) # Ms(x), since 3 # 2! (mod 2™ — 1) and the
cyclotomic classes (', and ('3 are thus different, but

|| = |C3] =m. Hence, dimC = n — deg g(x) = 2™ — 1 — 2m.
Therefore,Cisa [2™ — 1, 2™ — 1 — 2m, d| code, where d > 5
by the BCH bound. A vector ¢ = (¢g,...,c,—1) € C if and

only if cH™ = o, where
1 — 1l a o? ... o |
1 o3 af ... 3D
Example . (Some Hamming codes are cyclic) Let n =
o be a primitive element of GF(¢™) and 3 = a?~!. The ¢-ary

cyclic code C = {c(z) € F,|c(B) =0},

IS an [n,n — m, 3] code if and only if (m,q—1) = 1.

q"—1
q—1 7
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Reed-Solomon (RS) codes

Definition . A Reed-Solomon (RS) code over F = GF(q),
q=7p™",Iis aq-ary BCH code C = (¢g(x)) of length N = ¢ — 1.
Let o be a primitive element of GF(q). Then a
Reed-Solomon code with design distance 6 has generator
polynomial

b—|—1) b—|—5—2>.

g(z) = (z —a®)(z — a (=«

Since degg(x) = 0 — 1, the dimension of the Cis N — + 1,
thatis, 9 = N — K + 1. But according to the Singleton bound
the minimum distance D < N — K +1and D > § by the

BCH bound.
Therefore, the Reed-Solomon code C is an MDS code with

N, K,N — K +1]
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Weight distribution of MDS code

Theorem . A number A; of codewords with weight j in a
g-ary |n, k] MDS code Is given by

_ — 1\ . .
o= (oS e e

(Recallthatd =n — k + 1)

Since Reed-Solomon codes are MDS codes, the above
formula give their weight distributions.
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Decoding by zeros of the code 1

Let B € GF(¢™) be a primitive n'* root of unity, where m is
the multiplicative order of ¢ modulo n. LetC = (g(x)) be a
cyclic code of length n over F = GF'(q) with zeros

ge, 8%, R

Suppose a codeword ¢(z) IS sent across the channel and
the vector v(x) = c¢(z) + e(x) is received. For the syndrome

s(z) = [v(®)]g(z) = le(x)]g@) @nd j = 1,2,...,r we have
s(6%) = v(B%) = e(BY) = €i, 8" + e, 87N + -+ e, BT
= E1X\7 + By XY 4 o+ By Xod,

where X; = 3", E; = ¢;,, and w is the weight of e¢(x). The
elements X4, X, ..., X, are called error locators.
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Decoding by zeros of the code 2

Definition . The elements
S = S(ﬂk) = Ele -+ E2X§ + -+ E’waL]Z)
are called generalized power-sum symmetric functions, and

very often they are referred to as syndrome seguence.
The polynomial

o(x) = (xr — X1)(z — Xa9)...(x — Xy)
=% — o1V 4 o9V — - (=10,
IS said to be error locator polynomial, where o; denotes the
i-th elementary symmetric function of {X;}.
Since X; are roots of o(z), thenfor i =1,2,...,w we have

X — a1 X =X — =y =0,
where a; = (=1)"lo;, i =1,...,w.
After some algebraic manipulations we can conclude that
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Decoding by zeros of the code 3

the sequence {5, } satisfies the recursion
Sjtw = a15j4w—1 + a2Sjrw—2 + - +awSj, j=0,1.2,...,
called generalized Newton’s identities.

The maximum likelihood decoding requires the polynomial
o(x) to be of the smallest possible degree, that is, the
decoding is based on the following task:

Given the syndrome sequence Sy, Sk, - .., S, find the
recursion of the smallest order this sequence satisfies.

Knowing the error locator polynomial we can determine the
erroneous positions, and then the magnitudes E; of errors
(in binary case the latter is not necessary). This approach
works well when consecutive members of {S;} are known,

what is the case of BCH and Reed-Solomon codes.
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Decoding by zeros of the code 4

Algorithm .

1. At receiving v compute the syndrome seguence
Sp, Sb+17 cee Sb+5_2, where Sj = U(ﬁj). |f every Sj =0
then set e(z) := 0 and go to step 5.

2. Determine the error locator polynomial o(x).

3. Determine the roots X, Xs,..., X, of o(z) and
erroneous positions i, . . ., i, by X; = 3.

4. Calculate the error magnitudes E; = ¢;,, for example by

XY Xy ... X B Sh
xbre=l o xbre=l - xbtw-l ] \E, Shrw—1

5. ¢(x) :=v(x) — e(x) and stop.
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Decoding by zeros of the code 5

Many variants of the algorithm are developed that differ
each other mainly in the way of carrying out point 2. Here

some of them
# Peterson-Gorenstein-Zierler decoding algorithm

# Berlekamp-Massey algorithm
# Euclid’s algorithm

Indeed, the above algorithms use the reciprocal polynomial
of o(x). Its roots are the inverses of the error locators X ;:

w
Alz) = H(l —Xiz)=1—o1x+092° — -+ (—=1)¥ouz.
1=1
It is also referred to as the error locator polynomial.
We shall describe in detalls only the last algorithm.
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Euclid’s algorithm 1

Let 2¢ consecutive syndromes, Sy, Spi1, .- -, Sprot—1, b€
known for the received vector v(z). Let set

S(x) = Sp+ Spr17 + ...+ Spyor—1x
It is not difficult to check that
S(2)A(z) + u(z).2? = w(x),

2t—1

where
w w
det ZEiXbH 1 - X;x), degw(z) =w -1 <1,
1= 1 1%£]
def ZEXb+2tH1—X$ degu(x)zw—1<t,
]

Note that (u(x), A(x)) = 1.
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Euclid’s algorithm 2

It is important that based on the Euclid’s algorithm one can
determine A(x),u(x) and w(z) provided that S(z) Is given.

Theorem . For a given S(z), there exist unique polynomials
u(x), A(z), and w(x) such that

u(z).z? + A(x)S(z) = w(x),
and degw(z) < t, deg A(x) <t, with (u(x), A(z)) = 1.

Theorem . Provided that A(z) and w(x) are known, then the
error magnitudes are given by

w(X; )

Ej = — ,
CXIAx

where A’'(x) is the formal derivative of A(x).

CHONBUK
NATIONAL UNIVERSITY

N.L Manev. Lectures on Codina Theorv (BCH and Reed-Solomon codes) — p. 16/25



Euclid’s algorithm 3

Algorithm . Points 2 and 5 of the decoding algorithm.

Point 2:

Data: S(x).

Output: w(x), A(x).

Variables: A = (A1, As, As), B = (B, Bs, Bs), C = (C1,C5,C3)
A= (2%,1,0), B:=(S(2),0,1), C := (2,0,0).

while deg C; >t do

q(x) =|A1/B1|,C:=A—qB, A:=B, B:=C

else

w(x) := B, u(x) := B, A(x) := Bs.

Point 5:
w(X; )

B = — |
LT XA (XY
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Example of a BCH code

Let o be a primitive element of GF'(2%) with the minimal
polynomial ira = 2* + = + 1. Consider the binary [15, 5, 7]
code C with zeros a, a?, a3, a*, o®, a®. Therefore,

gx)= @+ + D)+ 22+t + D)@+ +1)
=V 4+t 41

The correspondence between multiplicative and polynomial
form of the elements of GF(16) Is given by

mult. | polyn. | mult. | polyn. | mult. | polyn. | mult. | polyn.

0 0000 | «° | 0001 | of | 1101 | o'' | 0111

1 1000 | o* | 1100 | &° 1010 | o' | 1111

o 0100 o’ 0110 o’ 0101 | '3 | 1011

o’ | 0010 | o% | 0011 | 'Y | 1110 | o™ | 1001
O Z5 oy
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Example of a BCH code 2

The code C can correct up to ¢ = 3 errors. Let the vector
v(z) =2+ +rx' 2P+t b+ 1=g(x)+ 2%+ 27
be received.

First we calculate the syndrome sequence {S; = v(a’)}:
Si=a’+a"=a'? Sy=a*+a%=0a" S3=a+a’=0,
Si=a’+a? =0’ Ss=a%+a’=1, Ss=a'*+al*=0.

Hence S(z) = a'? + oz + o’23 + 24
% 1 0 q(x)
S(xz) | O 1 2 + ol + al

o’ 1| 22+ a3z 4+ ab
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Example of a BCH code 3

At the first step of the Euclid’s algorithm we reach the
stopping condition. Therefore

w(x) = a; u(x) = 1; Az) = 2? + o’z — ab.
Then we determine the roots of A(z): X; ' =a®? X;!'=ab

Hence the error locators are X; = o and X5 = o', that is
the error vector is e(z) = 22 + 27
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Example of error+erasure decoding 1

Let o be a primitive element of F = GF(2°) with the minimal
polynomial irra = 2° + 22 + 1. Consider the [31,27,7] RS

code C with zeros a, a?, a3, a*, o®, a®. Therefore,

g(z) = 2° + a2° + o”2* + o*2% + %27 4+ a*z + o

Let the receiver mark erasures with the symbol 7.

Let the vector at the output of the receiver be

U(CL’) :$7—|—T$6—|—Tx5—|—0424334—|—0424332—|—O¢21£C

We now replace 1 by zero and compute the syndromes
S; = v(at):
S1 =0, 9 =a'? 93=0a'" 94=0a% 55=0a'" S5=0a",

thatis S(z) = o2 + a2t + o027 + V22 + a2,
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Example of error+erasure decoding

The erasure positions correspond to Y7 = o and Y3 = af.
Hence

Az) = (1 —-a’z)(1 —a®2)A1(z) = (a''z? + o®x + 1)A1 (7).
Let T'(z)= S(z)(aM2? +a®z+1) =
0420337—|—CU7£E6 —I—CU6£C5 —|—()43£C4 —|—CU21£IZ'3 —I—CU13£E2 —|—CU16£IZ'
We now look for A (z), u(z),w(x) such that
T(x)A1(z) + 2% u(z) = w(x),
where degw(z) < 3, since the minimum distance is 7.

Since z divides both T'(z) and z°, we can look for
Aq(x),u(x),wi(x) such that

Ty (z)A1(z) + 2°u(z) = wi (),
where Ty (x) = T(x)/z, wi(z) = w(z)/x, and degwy (x) < 2.
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Example of error+erasure decoding 3

Ty (z) 1 0 q(x)

0 0 1 oV + af
r(x) 1 oV + af a®Pr + o??
r(z) | o®z + a2 | a2 + bz + o

r(z) = a2zt + a2 + a®®z + o',

ri(z) = o’z + o',

degri(z) < 2, then wi(z) = r1(z), u(zr) = a'*z? + o’z + o?
and Aq(z) = oz + o?? = o?2(1 + o). Therefore, the
unknown erroneous position corresponds to 23 and

Az) = a2’ + a®2% + o?x + a??, N (z) = o®2? + o?
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Example of error+erasure decoding 4

The error vector is e(z) = E123 + Ex2® 4+ E325, where

B = w(a™?) _ (e +a’) _ 16
A’(&_S) a0 4+ 2

B, — wa™) (e +a”) _
N(a3) a1 a2

By — w(a™®) _ (@™? +a) _ 10
A/(a—G) a4 + 2

The codeword sent across the channel is

10,..6 24 4 16 .3 24 2 21 ( )

c(z) = 2" +a'%2+ a2’ + 0t + ol + a* et 4 ofle = xg(a

CHONBUK
NATIONAL UNIVERSITY

N L Manev. Lectures on Codina Theorv (BCH and Reed-Solomon codes) — n. 24/25



The end of the part

Thank You for Attention!
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