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Zeros of a code 1

Let q = pk be a prime power and n be an integer such that
(n, q) = 1. Then xn − 1 = p1(x) . . . pk(x), where pi(x) are
different irreducible polynomials over F = GF (q). Obviously,
the roots of all polynomials pi(x) are n-th roots of unity. Let
K = GF (qm) be the splitting field of xn − 1, i.e., the minimal
extension of F which contains all n-th roots of unity.
The set of all n-th roots of unity is a multiplicative subgroup
of K

∗, and it is thus cyclic, that is, there exists a β ∈ K
∗ such

that all roots of xn − 1 are {1, β, β2, . . . , βn−1}. If α is a

primitive element of K, then we can take β = α
qm
−1

n . The
extension degree m = [K : F] of F is the smallest positive
integer such that qm ≡ 1 (mod n).
Definition . The multiplicative order of q modulo n is the
smallest integer m such that n divides qm − 1.
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Zeros of a code 2

Definition . A cyclotomic coset of i modulo n with respect to
q is called the set

Ci = {i, iq, . . . , iqmi−1},

where iqmi ≡ i (mod n) and mi is the smallest positive
integer with this property.

Recall that if βi is a root of a irreducible factor, p(x), of
xn − 1, then any other root of p(x) has the form βiqs

, for a
suitable integer s. Hence, there is an one-to-one correspon-
dence between irreducible factors pi(x) of xn − 1 and
cyclotomic cosets modulo n.
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Zeros of a code 3

Let C = (g(x)) be a cyclic code. Then its generator
polynomial is g(x) = pk1

(x)pk2
(x) . . . pks

(x).
Definition . Let C = (g(x)) be a cyclic code with a generator
polynomial

g(x) =
∏

j∈P

(x − βj), P ⊂ {0, 1, . . . , n − 1}

(P is an union of cyclotomic classes.) The set {βj |j ∈ P} is
called the set of zeros of C, and the set {βj |j 6∈ P} is
referred to as the set of non-zeros.

Proposition . c(x) ∈ C if and only if c(βj) = 0 for any j ∈ P ,
that is,

C = (g(x)) = {c(x) | c(βj) = 0, j ∈ P}.

Proposition . γ is a zero of C⊥ if and only if γ−1 is a
non-zero of C.
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BCH bound

Let {α1, α2, . . . , αs}, s = |P |, be the set of zeros of the code
C = (g(x)). Then C = {c ∈ F

n | cHτ = 0}, where

H =











1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

. . . . .

1 αs α2
s . . . αn−1

s











.

Obviously, it is sufficient to take only those αj that are roots
of different irreducible factors of g(x).

Theorem . Let C = (g(x)) be a cyclic code over F such that
for some integers b ≥ 0 and δ ≥ 1

g(βb) = g(βb+1) = · · · = g(βb+δ−2) = 0.

Then the minimum distance of C is at least δ.
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BCH (Bose-Chaudhudri-Hocquenghem) codes 1

Definition . The cyclic code C = (g(x)) of length n over F is
called BCH code with design distance δ if for some integer
b ≥ 0 its generator polynomial g(x) is the least common
multiple of the minimal polynomials of βb, βb+1, . . . , βb+δ−2

where β is a primitive nth root of unity. If n = qm − 1, then
the BCH code is called primitive. Usually we take b = 1 and
refer to the resulting code as a narrow-sense BCH code.

Example . (BCH code correcting 2 errors) Let F = GF (2),
n = 2m − 1 and α be a primitive element of GF (2m).
Consider the primitive narrow-sense BCH code with design
distance 5, that is, the BCH code with zeros α, α2, α3, α4,
whose generator polynomial is

g(x) = l.c.m.[M1(x),M3(x)] = M1(x)M3(x),

where Mi(x) = irrF αi is the minimal polynomial of αi.
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BCH (Bose-Chaudhudri-Hocquenghem) codes 1

Note that M1(x) 6= M3(x), since 3 6≡ 2l (mod 2m − 1) and the
cyclotomic classes C1 and C3 are thus different, but
|C1| = |C3| = m. Hence, dim C = n − deg g(x) = 2m − 1 − 2m.
Therefore, C is a [2m − 1, 2m − 1 − 2m, d] code, where d ≥ 5
by the BCH bound. A vector c = (c0, . . . , cn−1) ∈ C if and
only if cH̃τ = o, where

H̃ =

(

1 α α2 . . . αn−1

1 α3 α6 . . . α3(n−1)

)

.

Example . (Some Hamming codes are cyclic) Let n = qm−1
q−1 ,

α be a primitive element of GF (qm) and β = αq−1. The q-ary
cyclic code

C = {c(x) ∈ Fn | c(β) = 0},

is an [n, n − m, 3] code if and only if (m, q − 1) = 1.
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Reed-Solomon (RS) codes

Definition . A Reed-Solomon (RS) code over F = GF (q),
q = pm, is a q-ary BCH code C = (g(x)) of length N = q − 1.
Let α be a primitive element of GF (q). Then a
Reed-Solomon code with design distance δ has generator
polynomial

g(x) = (x − αb)(x − αb+1) . . . (x − αb+δ−2).

Since deg g(x) = δ − 1, the dimension of the C is N − δ + 1,
that is, δ = N − K + 1. But according to the Singleton bound
the minimum distance D ≤ N − K + 1 and D ≥ δ by the
BCH bound.
Therefore, the Reed-Solomon code C is an MDS code with

[N,K,N − K + 1]
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Weight distribution of MDS code

Theorem . A number Aj of codewords with weight j in a
q-ary [n, k] MDS code is given by

Aj =

(

n

j

)

(q − 1)

j−d
∑

i=0

(−1)j
(

j − 1

i

)

qj−d−i, j = d, d + 1, . . . .

(Recall that d = n − k + 1)

Since Reed-Solomon codes are MDS codes, the above
formula give their weight distributions.
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Decoding by zeros of the code 1

Let β ∈ GF (qm) be a primitive nth root of unity, where m is
the multiplicative order of q modulo n. Let C = (g(x)) be a
cyclic code of length n over F = GF (q) with zeros
βk1 , βk2 , . . . , βkr .
Suppose a codeword c(x) is sent across the channel and
the vector v(x) = c(x) + e(x) is received. For the syndrome
s(x) = [v(x)]g(x) = [e(x)]g(x) and j = 1, 2, . . . , r we have

s(βkj ) = v(βkj) = e(βkj) = ei1β
i1kj + ei2β

i2kj + · · · + eiwβiwkj

= E1X
kj

1 + E2X
kj

2 + · · · + EwX
kj

w ,

where Xl = βil, El = eil, and w is the weight of e(x). The
elements X1, X2, . . . , Xw are called error locators.
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Decoding by zeros of the code 2

Definition . The elements
Sk = s(βk) = E1X

k
1 + E2X

k
2 + · · · + EwXk

w,

are called generalized power-sum symmetric functions, and
very often they are referred to as syndrome sequence.
The polynomial

σ(x) = (x − X1)(x − X2) . . . (x − Xw)

= xw − σ1x
w−1 + σ2x

w−2 − · · · + (−1)wσw

is said to be error locator polynomial, where σi denotes the
i-th elementary symmetric function of {Xl}.
Since Xl are roots of σ(x), then for l = 1, 2, . . . , w we have

Xw
l − a1X

w−1
l − a2X

w−2
l − · · · − aw = 0,

where ai = (−1)i−1σi, i = 1, . . . , w.
After some algebraic manipulations we can conclude that
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Decoding by zeros of the code 3

the sequence {Sj} satisfies the recursion
Sj+w = a1Sj+w−1 + a2Sj+w−2 + · · · + awSj , j = 0, 1.2, . . . ,

called generalized Newton’s identities.
The maximum likelihood decoding requires the polynomial
σ(x) to be of the smallest possible degree, that is, the
decoding is based on the following task:
Given the syndrome sequence Sk1

, Sk2
, . . . , Skr

find the
recursion of the smallest order this sequence satisfies.

Knowing the error locator polynomial we can determine the
erroneous positions, and then the magnitudes El of errors
(in binary case the latter is not necessary). This approach
works well when consecutive members of {Sj} are known,
what is the case of BCH and Reed-Solomon codes.
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Decoding by zeros of the code 4

Algorithm .

1. At receiving v compute the syndrome sequence
Sb, Sb+1, . . . , Sb+δ−2, where Sj = v(βj). If every Sj = 0
then set e(x) := 0 and go to step 5.

2. Determine the error locator polynomial σ(x).

3. Determine the roots X1, X2, . . . , Xw of σ(x) and
erroneous positions i1, . . . , iw by Xl = βil.

4. Calculate the error magnitudes El = eil, for example by






Xb
1 Xb

2 . . . Xb
w

...
...

...
Xb+w−1

1 Xb+w−1
2 . . . Xb+w−1

w













E1
...

Ew






=







Sb
...

Sb+w−1







5. c(x) := v(x) − e(x) and stop.
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Decoding by zeros of the code 5

Many variants of the algorithm are developed that differ
each other mainly in the way of carrying out point 2. Here
some of them

Peterson-Gorenstein-Zierler decoding algorithm

Berlekamp-Massey algorithm

Euclid’s algorithm

Indeed, the above algorithms use the reciprocal polynomial
of σ(x). Its roots are the inverses of the error locators Xj :

Λ(x) =
w
∏

i=1

(1 − Xix) = 1 − σ1x + σ2x
2 − · · · + (−1)wσwxw.

It is also referred to as the error locator polynomial.
We shall describe in details only the last algorithm.

N.L.Manev, Lectures on Coding Theory (BCH and Reed-Solomon codes) – p. 14/25



Euclid’s algorithm 1

Let 2t consecutive syndromes, Sb, Sb+1, . . . , Sb+2t−1, be
known for the received vector v(x). Let set

S(x) = Sb + Sb+1x + . . . + Sb+2t−1x
2t−1.

It is not difficult to check that
S(x)Λ(x) + u(x).x2t = ω(x),

where

ω(x)
def
=

w
∑

i=1

EiX
b
i

w
∏

i 6=j

(1 − Xjx), deg ω(x) = w − 1 < t,

u(x)
def
=

w
∑

i=1

EiX
b+2t
i

w
∏

i 6=j

(1 − Xjx), deg u(x) = w − 1 < t,

Note that (u(x),Λ(x)) = 1.
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Euclid’s algorithm 2

It is important that based on the Euclid’s algorithm one can
determine Λ(x), u(x) and ω(x) provided that S(x) is given.

Theorem . For a given S(x), there exist unique polynomials
u(x), Λ(x), and ω(x) such that

u(x).x2t + Λ(x)S(x) = ω(x),

and deg ω(x) < t, deg Λ(x) ≤ t, with (u(x),Λ(x)) = 1.

Theorem . Provided that Λ(x) and ω(x) are known, then the
error magnitudes are given by

Ek = −
ω(X−1

k )

Xb−1
k Λ′(X−1

k )
,

where Λ′(x) is the formal derivative of Λ(x).
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Euclid’s algorithm 3

Algorithm . Points 2 and 5 of the decoding algorithm.
Point 2:
Data: S(x).
Output: ω(x), Λ(x).
Variables: A = (A1, A2, A3), B = (B1, B2, B3), C = (C1, C2, C3)

A := (x2t, 1, 0), B := (S(x), 0, 1), C := (xt, 0, 0).

while deg C1 ≥ t do
q(x) := [A1/B1], C := A − qB, A := B, B := C
else
ω(x) := B1, u(x) := B2, Λ(x) := B3.

Point 5:

Ek = −
ω(X−1

k )

Xb−1
k Λ′(X−1

k )
.
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Example of a BCH code 1

Let α be a primitive element of GF (24) with the minimal
polynomial irrα = x4 + x + 1. Consider the binary [15, 5, 7]

code C with zeros α, α2, α3, α4, α5, α6. Therefore,
g(x) = (x4 + x + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1)

= x10 + x8 + x5 + x4 + x2 + x + 1

The correspondence between multiplicative and polynomial
form of the elements of GF (16) is given by

mult. polyn. mult. polyn. mult. polyn. mult. polyn.
0 0000 α3 0001 α7 1101 α11 0111
1 1000 α4 1100 α8 1010 α12 1111
α 0100 α5 0110 α9 0101 α13 1011
α2 0010 α6 0011 α10 1110 α14 1001
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Example of a BCH code 2

The code C can correct up to t = 3 errors. Let the vector
v(x) = x10 + x8 + x7 + x5 + x4 + x + 1 = g(x) + x2 + x7

be received.

First we calculate the syndrome sequence {Sj = v(αj)}:

S1 = α2 + α7 = α12, S2 = α4 + α14 = α9, S3 = α6 + α6 = 0,

S4 = α8 + α13 = α3, S5 = α10 + α5 = 1, S6 = α12 + α12 = 0.

Hence S(x) = α12 + α9x + α3x3 + x4.

x6 1 0 q(x)

S(x) 0 1 x2 + α3x + α6

α3 1 x2 + α3x + α6

N.L.Manev, Lectures on Coding Theory (BCH and Reed-Solomon codes) – p. 19/25



Example of a BCH code 3

At the first step of the Euclid’s algorithm we reach the
stopping condition. Therefore
ω(x) = α3; u(x) = 1; Λ(x) = x2 + α3x − α6.

Then we determine the roots of Λ(x): X−1
1 = α13, X−1

2 = α8.

Hence the error locators are X1 = α2 and X2 = α7, that is
the error vector is e(x) = x2 + x7.
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Example of error+erasure decoding 1

Let α be a primitive element of F = GF (25) with the minimal
polynomial irrα = x5 + x2 + 1. Consider the [31, 27, 7] RS
code C with zeros α, α2, α3, α4, α5, α6. Therefore,

g(x) = x6 + α10x5 + α9x4 + α24x3 + α16x2 + α24x + α21

Let the receiver mark erasures with the symbol †.
Let the vector at the output of the receiver be

v(x) = x7 + †x6 + †x5 + α24x4 + α24x2 + α21x

We now replace † by zero and compute the syndromes
Si = v(αi):

S1 = 0, S2 = α19, S3 = α10, S4 = α26, S5 = α17, S6 = α9,

that is S(x) = α9x5 + α17x4 + α26x3 + α10x2 + α19x.
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Example of error+erasure decoding 2

The erasure positions correspond to Y1 = α5 and Y2 = α6.
Hence
Λ(x) = (1 − α5x)(1 − α6x)Λ1(x) = (α11x2 + α23x + 1)Λ1(x).

Let T (x) = S(x)(α11x2 + α23x + 1) =

α20x7 + α7x6 + α6x5 + α3x4 + α21x3 + α13x2 + α16x
We now look for Λ1(x), u(x), ω(x) such that

T (x)Λ1(x) + x6.u(x) = ω(x),

where deg ω(x) < 3, since the minimum distance is 7.

Since x divides both T (x) and x6, we can look for
Λ1(x), u(x), ω1(x) such that

T1(x)Λ1(x) + x5.u(x) = ω1(x),

where T1(x) = T (x)/x, ω1(x) = ω(x)/x, and deg ω1(x) < 2.
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Example of error+erasure decoding 3

T1(x) 1 0 q(x)

x5 0 1 α20x + α7

r(x) 1 α20x + α7 α25x + α22

r1(x) α25x + α22 α14x2 + α5x + α3

where
r(x) = α6x4 + α3x3 + α28x + α19,

r1(x) = α9x + α10.

deg r1(x) < 2, then ω1(x) = r1(x), u(x) = α14x2 + α5x + α3

and Λ1(x) = α25x + α22 = α22(1 + α3x). Therefore, the
unknown erroneous position corresponds to x3 and

Λ(x) = α5x3 + α26x2 + α2x + α22, Λ′(x) = α5x2 + α2
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Example of error+erasure decoding 4

The error vector is e(x) = E1x
3 + E2x

5 + E3x
6, where

E1 =
ω(α−3)

Λ′(α−3)
=

(α3 + α7)

α30 + α2
= α16

E2 =
ω(α−5)

Λ′(α−5)
=

(α−1 + α5)

α26 + α2
= α9

E3 =
ω(α−6)

Λ′(α−6)
=

(α−3 + α4)

α24 + α2
= α10

The codeword sent across the channel is

c(x) = x7+α10x6+α9x5+α24x4+α16x3+α24x2+α21x = xg(x).
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The end of the part

Thank You for Attention!
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