Coding Theory (BCH and Reed-Solomon codes)

Lector: Nikolai L. Manev

Institute of Mathematics and Informatics, Sofia, Bulgaria

Let $q = p^k$ be a prime power and n be an integer such that (n,q)=1. Then $x^n-1=p_1(x)\dots p_k(x)$, where $p_i(x)$ are different irreducible polynomials over $\mathbb{F} = GF(q)$. Obviously, the roots of all polynomials $p_i(x)$ are n-th roots of unity. Let $\mathbb{K} = GF(q^m)$ be the splitting field of $x^n - 1$, i.e., the minimal extension of \mathbb{F} which contains all n-th roots of unity. The set of all n-th roots of unity is a multiplicative subgroup of \mathbb{K}^* , and it is thus cyclic, that is, there exists a $\beta \in \mathbb{K}^*$ such that all roots of $x^n - 1$ are $\{1, \beta, \beta^2, \dots, \beta^{n-1}\}$. If α is a primitive element of \mathbb{K} , then we can take $\beta = \alpha^{\frac{q^m-1}{n}}$. The extension degree $m = [\mathbb{K} : \mathbb{F}]$ of \mathbb{F} is the smallest positive integer such that $q^m \equiv 1 \pmod{n}$.

Definition. The *multiplicative order of* q *modulo* n is the smallest integer m such that n divides $q^m - 1$.

Zeros of a code

Definition. A *cyclotomic coset of* i *modulo* n *with respect to* q is called the set

$$C_i = \{i, iq, \dots, iq^{m_i-1}\},\$$

where $iq^{m_i} \equiv i \pmod{n}$ and m_i is the smallest positive integer with this property.

Recall that if β^i is a root of a irreducible factor, p(x), of x^n-1 , then any other root of p(x) has the form β^{iq^s} , for a suitable integer s. Hence, there is an one-to-one correspondence between irreducible factors $p_i(x)$ of x^n-1 and cyclotomic cosets modulo n.

Let C = (g(x)) be a cyclic code. Then its generator polynomial is $g(x) = p_{k_1}(x)p_{k_2}(x)\dots p_{k_s}(x)$.

Definition. Let C = (g(x)) be a cyclic code with a generator polynomial

$$g(x) = \prod_{j \in P} (x - \beta^j), \quad P \subset \{0, 1, \dots, n - 1\}$$

(P is an union of cyclotomic classes.) The set $\{\beta^j|j\in P\}$ is called the set of zeros of C, and the set $\{\beta^j|j\notin P\}$ is referred to as the set of non-zeros.

Proposition. $c(x) \in \mathcal{C}$ if and only if $c(\beta^j) = 0$ for any $j \in P$, that is, $\mathcal{C} = (g(x)) = \{c(x) \mid c(\beta^j) = 0, \ j \in P\}.$

Proposition. γ is a zero of \mathcal{C}^{\perp} if and only if γ^{-1} is a non-zero of \mathcal{C} .

BCH bound

Let $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$, s = |P|, be the set of zeros of the code $\mathcal{C} = (g(x))$. Then $\mathcal{C} = \{\mathbf{c} \in \mathbb{F}^n \mid \mathbf{c}\mathbf{H}^{\tau} = 0\}$, where

$$\mathbf{H} = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ & & & & & \\ 1 & \alpha_s & \alpha_s^2 & \dots & \alpha_s^{n-1} \end{pmatrix}.$$

Obviously, it is sufficient to take only those α_j that are roots of different irreducible factors of g(x).

Theorem. Let C = (g(x)) be a cyclic code over \mathbb{F} such that for some integers $b \geq 0$ and $\delta \geq 1$

$$g(\beta^b) = g(\beta^{b+1}) = \dots = g(\beta^{b+\delta-2}) = 0.$$

Then the minimum distance of C is at least δ .

BCH (Bose-Chaudhudri-Hocquenghem) codes

Definition. The cyclic code $\mathcal{C}=(g(x))$ of length n over \mathbb{F} is called BCH code with design distance δ if for some integer $b\geq 0$ its generator polynomial g(x) is the least common multiple of the minimal polynomials of $\beta^b, \beta^{b+1}, \ldots, \beta^{b+\delta-2}$ where β is a primitive n^{th} root of unity. If $n=q^m-1$, then the BCH code is called *primitive*. Usually we take b=1 and refer to the resulting code as a *narrow-sense BCH* code.

Example. (*BCH* code correcting 2 errors) Let $\mathbb{F} = GF(2)$, $n = 2^m - 1$ and α be a primitive element of $GF(2^m)$. Consider the primitive narrow-sense BCH code with design distance 5, that is, the BCH code with zeros $\alpha, \alpha^2, \alpha^3, \alpha^4$, whose generator polynomial is

$$g(x) = l.c.m.[M_1(x), M_3(x)] = M_1(x)M_3(x),$$

where $M_i(x) = \operatorname{irr}_F \alpha^i$ is the minimal polynomial of α^i .

BCH (Bose-Chaudhudri-Hocquenghem) codes

Note that $M_1(x) \neq M_3(x)$, since $3 \not\equiv 2^l \pmod{2^m-1}$ and the cyclotomic classes C_1 and C_3 are thus different, but $|C_1| = |C_3| = m$. Hence, $\dim \mathcal{C} = n - \deg g(x) = 2^m - 1 - 2m$. Therefore, \mathcal{C} is a $[2^m - 1, \ 2^m - 1 - 2m, \ d]$ code, where $d \geq 5$ by the BCH bound. A vector $\mathbf{c} = (c_0, \dots, c_{n-1}) \in \mathcal{C}$ if and only if $\mathbf{c}\tilde{\mathbf{H}}^{\tau} = \mathbf{o}$, where

$$\tilde{\mathbf{H}} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^{n-1} \\ 1 & \alpha^3 & \alpha^6 & \dots & \alpha^{3(n-1)} \end{pmatrix}.$$

Example. (Some Hamming codes are cyclic) Let $n = \frac{q^m - 1}{q - 1}$, α be a primitive element of $GF(q^m)$ and $\beta = \alpha^{q-1}$. The q-ary cyclic code $\mathcal{C} = \{c(x) \in \mathcal{F}_n \mid c(\beta) = 0\},$

is an [n, n-m, 3] code if and only if (m, q-1) = 1.

Reed-Solomon (RS) codes

Definition. A Reed-Solomon (RS) code over $\mathbb{F} = GF(q)$, $q = p^m$, is a q-ary BCH code $\mathcal{C} = (g(x))$ of length N = q - 1. Let α be a primitive element of GF(q). Then a Reed-Solomon code with design distance δ has generator polynomial

$$g(x) = (x - \alpha^b)(x - \alpha^{b+1})\dots(x - \alpha^{b+\delta-2}).$$

Since $\deg g(x)=\delta-1$, the dimension of the $\mathcal C$ is $N-\delta+1$, that is, $\delta=N-K+1$. But according to the Singleton bound the minimum distance $D\leq N-K+1$ and $D\geq \delta$ by the BCH bound.

Therefore, the Reed-Solomon code C is an MDS code with

$$[N, K, N - K + 1]$$

Weight distribution of MDS code

Theorem. A number A_j of codewords with weight j in a q-ary [n,k] MDS code is given by

$$A_j = \binom{n}{j} (q-1) \sum_{i=0}^{j-d} (-1)^j \binom{j-1}{i} q^{j-d-i}, \quad j = d, d+1, \dots$$

(Recall that d = n - k + 1)

Since Reed-Solomon codes are MDS codes, the above formula give their weight distributions.

Let $\beta \in GF(q^m)$ be a primitive n^{th} root of unity, where m is the multiplicative order of q modulo n. Let $\mathcal{C} = (g(x))$ be a cyclic code of length n over $\mathbb{F} = GF(q)$ with zeros $\beta^{k_1}, \beta^{k_2}, \dots, \beta^{k_r}$.

Suppose a codeword c(x) is sent across the channel and the vector v(x) = c(x) + e(x) is received. For the syndrome $s(x) = [v(x)]_{g(x)} = [e(x)]_{g(x)}$ and j = 1, 2, ..., r we have

$$s(\beta^{k_j}) = v(\beta^{k_j}) = e(\beta^{k_j}) = e_{i_1}\beta^{i_1k_j} + e_{i_2}\beta^{i_2k_j} + \dots + e_{i_w}\beta^{i_wk_j}$$
$$= E_1X_1^{k_j} + E_2X_2^{k_j} + \dots + E_wX_w^{k_j},$$

where $X_l = \beta^{i_l}$, $E_l = e_{i_l}$, and w is the weight of e(x). The elements X_1, X_2, \ldots, X_w are called *error locators*.

Definition. The elements

$$S_k = s(\beta^k) = E_1 X_1^k + E_2 X_2^k + \dots + E_w X_w^k,$$

are called *generalized power-sum symmetric functions*, and very often they are referred to as *syndrome sequence*. The polynomial

$$\sigma(x) = (x - X_1)(x - X_2) \dots (x - X_w)$$

= $x^w - \sigma_1 x^{w-1} + \sigma_2 x^{w-2} - \dots + (-1)^w \sigma_w$

is said to be *error locator polynomial*, where σ_i denotes the i-th elementary symmetric function of $\{X_l\}$.

Since X_l are roots of $\sigma(x)$, then for $l=1,2,\ldots,w$ we have

$$X_l^w - a_1 X_l^{w-1} - a_2 X_l^{w-2} - \dots - a_w = 0,$$

where $a_i = (-1)^{i-1}\sigma_i, i = 1, ..., w$.

After some algebraic manipulations we can conclude that

the sequence $\{S_j\}$ satisfies the recursion

$$S_{j+w} = a_1 S_{j+w-1} + a_2 S_{j+w-2} + \cdots + a_w S_j, \quad j = 0, 1.2, \ldots,$$
 called *generalized Newton's identities*.

The maximum likelihood decoding requires the polynomial $\sigma(x)$ to be of the smallest possible degree, that is, the decoding is based on the following task:

Given the syndrome sequence $S_{k_1}, S_{k_2}, \ldots, S_{k_r}$ find the recursion of the smallest order this sequence satisfies.

Knowing the error locator polynomial we can determine the erroneous positions, and then the magnitudes E_l of errors (in binary case the latter is not necessary). This approach works well when consecutive members of $\{S_j\}$ are known, what is the case of BCH and Reed-Solomon codes.

Algorithm.

- 1. At receiving v compute the syndrome sequence $S_b, S_{b+1}, \ldots, S_{b+\delta-2}$, where $S_j = v(\beta^j)$. If every $S_j = 0$ then set e(x) := 0 and go to step 5.
- 2. Determine the error locator polynomial $\sigma(x)$.
- 3. Determine the roots X_1, X_2, \ldots, X_w of $\sigma(x)$ and erroneous positions i_1, \ldots, i_w by $X_l = \beta^{i_l}$.
- 4. Calculate the error magnitudes $E_l = e_{i_l}$, for example by

$$\begin{pmatrix} X_1^b & X_2^b & \dots & X_w^b \\ \vdots & \vdots & \vdots & & \\ X_1^{b+w-1} & X_2^{b+w-1} & \dots & X_w^{b+w-1} \end{pmatrix} \begin{pmatrix} E_1 \\ \vdots \\ E_w \end{pmatrix} = \begin{pmatrix} S_b \\ \vdots \\ S_{b+w-1} \end{pmatrix}$$

5. c(x) := v(x) - e(x) and stop.

Many variants of the algorithm are developed that differ each other mainly in the way of carrying out point 2. Here some of them

- Peterson-Gorenstein-Zierler decoding algorithm
- Berlekamp-Massey algorithm
- Euclid's algorithm

Indeed, the above algorithms use the reciprocal polynomial of $\sigma(x)$. Its roots are the inverses of the error locators X_i :

$$\Lambda(x) = \prod_{i=1}^{w} (1 - X_i x) = 1 - \sigma_1 x + \sigma_2 x^2 - \dots + (-1)^w \sigma_w x^w.$$

It is also referred to as the error locator polynomial. We shall describe in details only the last algorithm.

Euclid's algorithm

Let 2t consecutive syndromes, $S_b, S_{b+1}, \ldots, S_{b+2t-1}$, be known for the received vector v(x). Let set

$$S(x) = S_b + S_{b+1}x + \ldots + S_{b+2t-1}x^{2t-1}.$$

It is not difficult to check that

$$S(x)\Lambda(x) + u(x).x^{2t} = \omega(x),$$

where

$$\omega(x) \stackrel{\text{def}}{=} \sum_{i=1}^{w} E_i X_i^b \prod_{i \neq j}^w (1 - X_j x), \qquad \deg \omega(x) = w - 1 < t,$$

$$u(x) \stackrel{\text{def}}{=} \sum_{i=1}^{w} E_i X_i^{b+2t} \prod_{i \neq j}^w (1 - X_j x), \qquad \deg u(x) = w - 1 < t,$$

Note that $(u(x), \Lambda(x)) = 1$.

Euclid's algorithm

It is important that based on the Euclid's algorithm one can determine $\Lambda(x), u(x)$ and $\omega(x)$ provided that S(x) is given.

Theorem. For a given S(x), there exist unique polynomials u(x), $\Lambda(x)$, and $\omega(x)$ such that

$$u(x).x^{2t} + \Lambda(x)S(x) = \omega(x),$$
 and $\deg \omega(x) < t, \ \deg \Lambda(x) \le t, \ \text{with} \ (u(x), \Lambda(x)) = 1.$

Theorem. Provided that $\Lambda(x)$ and $\omega(x)$ are known, then the error magnitudes are given by

$$E_k = -\frac{\omega(X_k^{-1})}{X_k^{b-1} \Lambda'(X_k^{-1})},$$

where $\Lambda'(x)$ is the formal derivative of $\Lambda(x)$.

Euclid's algorithm

Algorithm. Points 2 and 5 of the decoding algorithm.

Point 2:

Data: S(x).

Output: $\omega(x)$, $\Lambda(x)$.

Variables: $A = (A_1, A_2, A_3), B = (B_1, B_2, B_3), C = (C_1, C_2, C_3)$

$$A := (x^{2t}, 1, 0), B := (S(x), 0, 1), C := (x^t, 0, 0).$$

while $\deg C_1 > t$ do

$$q(x) := [A_1/B_1], C := A - qB, A := B, B := C$$

else

$$\omega(x) := B_1, \ u(x) := B_2, \ \Lambda(x) := B_3.$$

Point 5:

$$E_k = -\frac{\omega(X_k^{-1})}{X_k^{b-1} \Lambda'(X_k^{-1})}.$$

Example of a BCH code

Let α be a primitive element of $GF(2^4)$ with the minimal polynomial $\operatorname{irr} \alpha = x^4 + x + 1$. Consider the binary [15, 5, 7] code $\mathcal C$ with zeros $\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$. Therefore,

$$g(x) = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)$$
$$= x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1$$

The correspondence between multiplicative and polynomial form of the elements of GF(16) is given by

mult.	polyn.	mult.	polyn.	mult.	polyn.	mult.	polyn.
0	0000	α^3	0001	α^7	1101	α^{11}	0111
1	1000	α^4	1100	α^8	1010	α^{12}	1111
α	0100	α^5	0110	α^9	0101	α^{13}	1011
α^2	0010	α^6	0011	α^{10}	1110	α^{14}	1001

Example of a BCH code

The code $\mathcal C$ can correct up to t=3 errors. Let the vector $v(x)=x^{10}+x^8+x^7+x^5+x^4+x+1=g(x)+x^2+x^7$ be received.

First we calculate the syndrome sequence $\{S_j = v(\alpha^j)\}$:

$$S_1 = \alpha^2 + \alpha^7 = \alpha^{12}$$
, $S_2 = \alpha^4 + \alpha^{14} = \alpha^9$, $S_3 = \alpha^6 + \alpha^6 = 0$, $S_4 = \alpha^8 + \alpha^{13} = \alpha^3$, $S_5 = \alpha^{10} + \alpha^5 = 1$, $S_6 = \alpha^{12} + \alpha^{12} = 0$.

Hence

$$S(x) = \alpha^{12} + \alpha^9 x + \alpha^3 x^3 + x^4.$$

x^6	1	0	q(x)		
S(x)	0	1	$x^2 + \alpha^3 x + \alpha^6$		
α^3	1	$x^2 + \alpha^3 x + \alpha^6$			

Example of a BCH code

At the first step of the Euclid's algorithm we reach the stopping condition. Therefore

$$\omega(x) = \alpha^3;$$
 $u(x) = 1;$ $\Lambda(x) = x^2 + \alpha^3 x - \alpha^6.$

Then we determine the roots of $\Lambda(x)$: $X_1^{-1} = \alpha^{13}$, $X_2^{-1} = \alpha^8$. Hence the error locators are $X_1 = \alpha^2$ and $X_2 = \alpha^7$, that is the error vector is $e(x) = x^2 + x^7$.

Let α be a primitive element of $\mathbb{F}=GF(2^5)$ with the minimal polynomial $\operatorname{irr}\alpha=x^5+x^2+1$. Consider the [31,27,7] RS code $\mathcal C$ with zeros $\alpha,\alpha^2,\alpha^3,\alpha^4,\alpha^5,\alpha^6$. Therefore,

$$g(x) = x^6 + \alpha^{10}x^5 + \alpha^9x^4 + \alpha^{24}x^3 + \alpha^{16}x^2 + \alpha^{24}x + \alpha^{21}$$

Let the receiver mark erasures with the symbol †. Let the vector at the output of the receiver be

$$v(x) = x^7 + \dagger x^6 + \dagger x^5 + \alpha^{24} x^4 + \alpha^{24} x^2 + \alpha^{21} x$$

We now replace \dagger by zero and compute the syndromes $S_i = v(\alpha^i)$:

$$S_1=0,\ S_2=\alpha^{19},\ S_3=\alpha^{10},\ S_4=\alpha^{26},\ S_5=\alpha^{17},\ S_6=\alpha^9,$$
 that is $S(x)=\alpha^9x^5+\alpha^{17}x^4+\alpha^{26}x^3+\alpha^{10}x^2+\alpha^{19}x.$

The erasure positions correspond to $Y_1 = \alpha^5$ and $Y_2 = \alpha^6$. Hence

$$\Lambda(x) = (1 - \alpha^5 x)(1 - \alpha^6 x)\Lambda_1(x) = (\alpha^{11} x^2 + \alpha^{23} x + 1)\Lambda_1(x).$$

Let
$$T(x) = S(x)(\alpha^{11}x^2 + \alpha^{23}x + 1) =$$

 $\alpha^{20}x^7 + \alpha^7x^6 + \alpha^6x^5 + \alpha^3x^4 + \alpha^{21}x^3 + \alpha^{13}x^2 + \alpha^{16}x$

We now look for $\Lambda_1(x), u(x), \omega(x)$ such that

$$T(x)\Lambda_1(x) + x^6.u(x) = \omega(x),$$

where $\deg \omega(x) < 3$, since the minimum distance is 7.

Since x divides both T(x) and x^6 , we can look for $\Lambda_1(x), u(x), \omega_1(x)$ such that

$$T_1(x)\Lambda_1(x) + x^5 \cdot u(x) = \omega_1(x),$$

where $T_1(x) = T(x)/x$, $\omega_1(x) = \omega(x)/x$, and $\deg \omega_1(x) < 2$.

$T_1(x)$	1	0	q(x)
x^5	0	1	$\alpha^{20}x + \alpha^7$
r(x)	1	$\alpha^{20}x + \alpha^7$	$\alpha^{25}x + \alpha^{22}$
$r_1(x)$	$\alpha^{25}x + \alpha^{22}$	$\alpha^{14}x^2 + \alpha^5x + \alpha^3$	

where

$$r(x) = \alpha^{6}x^{4} + \alpha^{3}x^{3} + \alpha^{28}x + \alpha^{19},$$
$$r_{1}(x) = \alpha^{9}x + \alpha^{10}.$$

 $\deg r_1(x) < 2$, then $\omega_1(x) = r_1(x)$, $u(x) = \alpha^{14}x^2 + \alpha^5x + \alpha^3$ and $\Lambda_1(x) = \alpha^{25}x + \alpha^{22} = \alpha^{22}(1 + \alpha^3x)$. Therefore, the unknown erroneous position corresponds to x^3 and

$$\Lambda(x) = \alpha^5 x^3 + \alpha^{26} x^2 + \alpha^2 x + \alpha^{22}, \qquad \Lambda'(x) = \alpha^5 x^2 + \alpha^2$$

The error vector is $e(x) = E_1x^3 + E_2x^5 + E_3x^6$, where

$$E_1 = \frac{\omega(\alpha^{-3})}{\Lambda'(\alpha^{-3})} = \frac{(\alpha^3 + \alpha^7)}{\alpha^{30} + \alpha^2} = \alpha^{16}$$

$$E_2 = \frac{\omega(\alpha^{-5})}{\Lambda'(\alpha^{-5})} = \frac{(\alpha^{-1} + \alpha^{5})}{\alpha^{26} + \alpha^{2}} = \alpha^9$$

$$E_3 = \frac{\omega(\alpha^{-6})}{\Lambda'(\alpha^{-6})} = \frac{(\alpha^{-3} + \alpha^4)}{\alpha^{24} + \alpha^2} = \alpha^{10}$$

The codeword sent across the channel is

$$c(x) = x^7 + \alpha^{10}x^6 + \alpha^9x^5 + \alpha^{24}x^4 + \alpha^{16}x^3 + \alpha^{24}x^2 + \alpha^{21}x = xg(x).$$

The end of the part

Thank You for Attention!